User Guide for

DRHBc Mass Table Calculation

Cong Pan (潘琮)

cpan18@pku.edu.cn

□ Introduction

How to calculate a nucleus

How to collect results

□ Notice

Introduction

The DRHBc code is a numerical program based on Fortran, and can solve the deformed relativistic Hartree-Bogoliubov equation with a Dirac Woods-Saxon basis.

The first version of the DRHBc code was developed by Prof. Shan-Gui Zhou and his collaborators, starting from 1998.

The latest released version of DRHBc code for mass table calculations is Code_DRHBc_202112.

DRHBc Mass Table Collaboration, PRC 106,014316 (2022)

The updated Code_DRHBc_202401 will be released soon.

Principal investigators need to (i) submit calculations, (ii) check the outputs, and (iii) summarize the results into a table, including binding energy, deformation, rms radius, etc.

If you found something interesting or have new ideas based on DRHBc, it is encouraged to discuss them with collaborators and publish papers.

E.g., halo, shape coexistence, new magic number, alpha decay, proton emission, recent experimental data ...

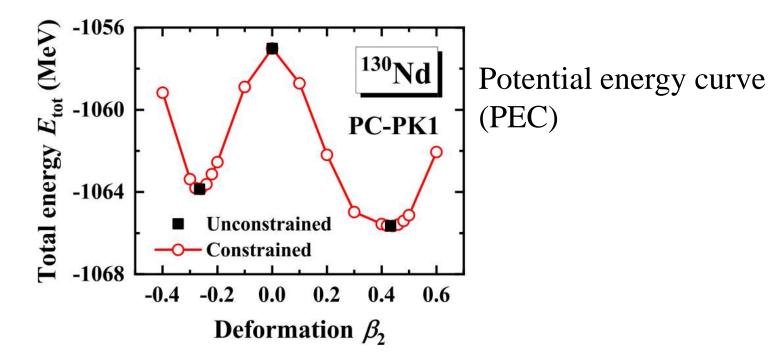
D Introduction

How to calculate a nucleus

How to collect results

□ Notice

Files of DRHBc code


	🖬 dir.dat	🖬 drhblib.f	🖬 potel.f		
Input file	₹ readme_dir.dat	🖬 drhbws.f	🖬 prep.f		
mpat me	🖬 ana.f	🔁 ecm_mic.f	reader.f		
	🕇 basis.f	🖬 erot.f	🖬 rungdi.f		
	🖬 broyden.f	🕇 expect.f	🕇 rungdo.f		
	🖬 can.f	🕇 field.f	ず sort.f		
	🕇 canws.f	🖬 gaussj.f	🕇 splout.f		
	🖬 ccom.f	🖬 gordon.f	🕇 start.f		
	🖬 default.f	🖬 inout.f	🕇 startws.f		
	🕇 densave.f	🖬 iter.f	paramet.for		
	🖬 densit.f	🖬 jmat.f	change.log		
	🖬 densit_can.f	🖬 lam.f	🗋 makefile		
	🖬 densit_canws.f	🖬 lev_can.f	🗋 mpireadme		
	🖬 densit_lev.f	🖬 mpi.f			
	🔂 diagm.f	🖬 norm_check.f			
	🖬 dirac0.f	🖬 pair.f			

Compile the code, modify input file, and run 1drhbws.

Example 1: Calculate ²⁰Ne, with initial deformation $\beta_0 = 0.4$.

Constrained calculation

In a constrained calculation, the deformation is constrained to a given value, not determined by iteration.

Example 2: Calculate ²⁰Ne, with deformation constrained to $\beta_{2,cst} = 0.35$.

Calculation with given initial potentials

In some cases, we need to do calculations starting from a given potential file dir.wel.

Example 3: Calculate ²⁰Ne, starting from converged potential.

Blocking effect for odd nucleus

When neutron or proton number is odd, the blocking effect of the odd nucleon should be considered.

Example 4: Calculate ²¹Ne, with initial deformation $\beta_{ini} = 0.2$.

D Introduction

How to calculate a nucleus

How to collect results

□ Notice

What results are needed

The head of the DRHBc mass table for even-even nuclei:

A N	E _b ^{cal} (MeV)	E_{b+rot}^{cal} (MeV)	E ^{exp} (MeV)	S _{2n} (MeV)	S_{2p} (MeV)	R _n (fm)	R _p (fm)	R _m (fm)	R _{ch} (fm)	R ^{exp} (fm)	β_{2n}	β_{2p}	β_2	λ_n (MeV)	λ_p (MeV)
-----	--	----------------------------	---------------------------	--------------------------	-------------------	------------------------	------------------------	------------------------	-------------------------	--------------------------	--------------	--------------	-----------	----------------------	----------------------

Therefore, the following results should be extracted:

- ✓ Etot, Ecm, Erot
- ✓ beta_n ,beta_p, beta_t
- ✓ r_n, r_p, r_m, r_c
- ✓ lam_n, lam_p
- \checkmark blocked orbital

Example 5: Extract the results of a calculation.

Procedure to find the ground state

- To correctly find the ground state of a nucleus, firstly one needs to find where is the corresponding deformation minimum.
 - Either of the two methods can be applied:

Method 1

- For each nucleus, independently perform the calculations with 11 initial deformations ($\beta_0 = -0.4$, -0.3, ..., 0.6).
- Take the result with the lowest Etotcm as the ground state.

Method 2

- For each nucleus, construct the PEC, and determine the deformation minima.
- Perform unconstrained calculations near the minima, and find the ground state.

One can contact HKU team for more details.

Based on the calculations, summarize a data table and determine ground-state properties according to Etotcm.

• One can use a bash script (or other tools) as an assistant.

Example 6: Determine the ground states for ^{159,161}Cs.

D Introduction

How to calculate a nucleus

How to collect results

Notice

Nuclide symbol

16 = 10	
rmax = 20.00	
xstep = 0.10	
maxi = 101 902	! max iteration step
xmix = 0.4	
inin = 1	! 1: start from DWS potential, 0: start from dir.wel
levin = 1	
AL 022	! nuclide symbol
beta = 0.40 0	! [1st] initial deformation; [2nd] NNTC
match0 = 25	
Ecut = 300.000 10000.000	
ibry ist = 1 40	
iext ire = $0 0 1$	
Neu. blk = 2 1 1 1	! [1st] 0:no block, 1:orbit-fix, 2:auto; [2nd-4th], m, ip, lb
Pro. $blk = 2 \ 1 \ 1 \ 1$! [1st] O:no block, 1:orbit-fix, 2:auto; [2nd-4th], m, ip, lb
Than CAN 3	

Notice the format of the nuclide symbol:

Element name: 2 characters, all capitalized. Mass number: 3 characters

 $\underline{A} \underline{L} \underline{0} \underline{2} \underline{2}$

The Legendre expansion truncations in different nuclear regions are different.They are modified in the file paramet.for.

$$\lambda_{\max} = \begin{cases} 6, & (8 \leq Z \leq 70) \\ 8, & (71 \leq Z \leq 100) \\ 10, & (101 \leq Z \leq 120) \\ checks in progress & (Z \geq 121) \end{cases}$$

Example 7: Unconstrained calculations for superheavy nucleus 300 Og (Z = 118). In a few cases, the iteration does not converge after maxi steps, and they should **NOT** be taken as the ground state. Empirically, about 10% calculations fail to converge.

For an odd system, due to the blocking effect, the calculation may be more difficult to converge and consume more time.

If the unconverged point is the possible ground state, then constrained calculations are needed for confirmation.

Thanks for your attention!