Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum

by DRHBc Mass Table Collaboration
(Updated on: )
Data reference: I: Even-even nuclei, At. Data Nucl. Data Tables 144, 101488 (2022).
II: Even-Z nuclei, At. Data Nucl. Data Tables 158, 101661 (2024).

Nuclear chart

Search for nuclei by proton number and neutron number

\(Z\):
\(N\):

Ground-state properties of: NullNull

\(Z\) \(N\) \(A\) \(E_{\mathrm{b}}^{\mathrm{cal}}\) (MeV) \(E_{\mathrm{b+rot}}^{\mathrm{cal}}\) (MeV) \(E_{\mathrm{b}}^{\mathrm{exp}}\) (MeV) \(S_{\mathrm{2n}}\) (MeV) \(S_{\mathrm{2p}}\) (MeV) \(R_{\mathrm{n}}\) (fm)
Null Null Null Null Null Null Null Null Null
\(R_{\mathrm{p}}\) (fm) \(R_{\mathrm{m}}\) (fm) \(R_{\mathrm{ch}}^{\mathrm{cal}}\) (fm) \(R_{\mathrm{ch}}^{\mathrm{exp}}\) (fm) \(\beta_{\mathrm{n}}\) \(\beta_{\mathrm{p}}\) \(\beta_{\mathrm{t}}\) \(\lambda_{\mathrm{n}}\) (MeV) \(\lambda_{\mathrm{p}}\) (MeV)
Null Null Null Null Null Null Null Null Null

Neutron mean-field potential of: NullNull (Z=Null, N=Null)

Coming soon

Note: Angle averaged mean-field potential (Angle averaged), mean-field potential along the symmetry axis \(z~(\theta=0^{\circ})\), and that perpendicular to the symmetry axis with \(r_{\perp}=\sqrt{x^{2}+y^{2}}~(\theta=90^{\circ})\) are presented. Here the angle averaged potential is equivalent to the spherical component of the Legendre expansion, i.e., \([V(r)+S(r)]_{\lambda=0}=\frac{1}{4\pi}\int[V(\boldsymbol{r})+S(\boldsymbol{r})]\mathrm{d}\Omega\).