Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum

by DRHBc Mass Table Collaboration
(Updated on: )
Data reference: I: Even-even nuclei, At. Data Nucl. Data Tables 144, 101488 (2022).
II: Even-Z nuclei, At. Data Nucl. Data Tables 158, 101661 (2024).

Publication List

2024

  • P. Guo et. al. (DRHBc Mass Table Collaboration), Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei, At. Data Nucl. Data Tables 158, 101661 (2024).
  • S. Wang, P. Guo, and C. Pan, Determining the Ground State for Superheavy Nuclei from the Deformed Relativistic Hartree–Bogoliubov Theory in Continuum, Particles 7(4), 1139 (2024).
  • C. Zhou, P. Guo, and X. J, Giant Halo in 66Ca Within Relativistic Continuum Hartree–Bogoliubov Theory Combined with Lipkin–Nogami Method, Particles 7(4), 1128 (2024).
  • P. Du, and J. Li, Exploring the Neutron Magic Number in Superheavy Nuclei: Insights into N = 258, Particles 7(4), 1086 (2024).
  • W.-J. Liu, E. Ha, C.-J. Lv, P. Guo, C. Pan, S. Wang, and X.-H. Wu, Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example, Particles 7(4), 1078 (2024).
  • M.-H. Mun, E. Ha, Y.-B. Choi, and M.-K. Cheoun, Nuclear shape evolution of neutron-deficient Au and kink structure of Pb isotopes, Phys. Rev. C 110, 024310 (2024).
  • W. Zhang, J. K. Huang, T. T. Sun, J. Peng and S. Q. Zhang, Inner fission barriers of uranium isotopes in the deformed relativistic Hartree-Bogoliubov theory in continuum, Chin. Phys. C 48, 104105 (2024).
  • X. X. Sun, S. G. Zhou, Shape decoupling effects and rotation of deformed halo nuclei, Nuclear Physics Review, 41(1): 75-85 (2024).
  • K. Y. Zhang, C. Pan, S. Y. Chen, Q. J. Luo, K. Y. Wu, Y. F. Xiang, Recent progress on halo nuclei in relativistic density functional theory, Nuclear Physics Review, 41(1): 191-199 (2024).
  • Y. X. Zhang, B. R. Liu, K. Y. Zhang, and J. M. Yao, Shell structure and shape transition in odd-𝑍 superheavy nuclei with proton numbers 𝑍 = 117, 119: Insights from applying deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 110, 024302 (2024).
  • M.-H. Mun, M.-K. Cheoun, E. Ha, H, Sagawa, and G. Colo, Symmetry energy from two-nucleon separation energies of Pb and Ca isotopes, Phys. Rev. C 110, 014314 (2024).
  • X.-T. He, J.-W. Wu, K.-Y. Zhang, and C.-W. Shen, Odd-even differences in the stability “peninsula” in the 106 ≤ 𝑍 ≤ 112 region with the deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 110, 014301 (2024).
  • C. Pan, K. Y. Zhang, and S. Q. Zhang, Nuclear magnetism in the deformed halo nucleus, Phys. Lett. B 855, 138792 (2024).
  • Y.-B. Choi, C.-H. Lee, M.-H. Mun, and S. Choi, α-decay half-lives for even-even isotopes of W to U, Phys. Rev. C 109, 054310 (2024).
  • X. H. Wu, C. Pan, K. Y. Zhang, and J. Hu, Nuclear mass predictions of the relativistic continuum Hartree-Bogoliubov theory with the kernel ridge regression, Phys. Rev. C 109, 024310 (2024).
  • J.-L. An, K.-Y. Zhang, Q. Lu, S.-Y. Zhong, S.-S. Zhang, A unified description of the halo nucleus 37Mg from microscopic structure to reaction observables, Phys. Lett. B 849, 138422 (2024).
  • R.-Y. Zheng, X.-X. Sun, G.-F. Shen, and L.-S. Geng, Evolution of N = 20, 28, 50 shell closures in the 20 ≤ Z ≤ 30 region in deformed relativistic Hartree-Bogoliubov theory in continuum, Chin. Phys. C 48, 014107 (2024).

2023

  • M.-H. Mun, S. Kim, M.-K. Cheoun, W.Y. So, S. Choi, E. H., Odd-even shape staggering and kink structure of charge radii of Hg isotopes by the deformed relativistic Hartree–Bogoliubov theory in continuum, Phys. Lett. B 847, 138298 (2023).
  • K. Y. Zhang, S. Q. Zhang and J. Meng, Possible neutron halo in the triaxial nucleus 42Al, Phys. Rev. C 108, L041301 (2023).
  • Y. Xiao, S.-Z. Xu, R.-Y. Zheng, X.-X. Sun, L.-S. Geng, and S.-S. Zhang, One-proton emission from 148−151Lu in the DRHBc+WKB approach, Phys. Lett. B 845, 138160 (2023).
  • P. Guo, C. Pan, Y. C. Zhao, X. K. Du, and S. Q. Zhang, Prolate-shape dominance in atomic nuclei within the deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 108, 014319 (2023).
  • X. Y. Zhang, Z. M. Niu, W. Sun, and X. W. Xia, Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 108, 024310 (2023).
  • K. Y. Zhang, S. Q. Yang, J. L. An, S. S. Zhang, P. Papakonstantinou, M.-H. Mun, Y. Kim, and H. Yan, Missed prediction of the neutron halo in 37Mg, Phys. Lett. B 844, 138112 (2023).
  • Yifeng Xiang, Qingjin Luo, Siqi Yang, and Kaiyuan Zhang, Spherical, Axial, and Triaxial Symmetries in the Study of Halo Nuclei with Covariant Density Functional Theory, Symmetry 15, 1420 (2023).
  • K. Y. Zhang, P. Papakonstantinou, M.-H. Mun, Y. Kim, H. Yan, and X.-X. Sun, Collapse of the N=28 shell closure in the newly discovered 39Na nucleus and the development of deformed halos towards the neutron dripline, Phys. Rev. C 107, L041303 (2023).

2022

  • K. Y. Zhang, C. Pan, and S. Q. Zhang, Optimized Dirac Woods-Saxon basis for covariant density functional theory, Phys. Rev. C 106, 024302 (2022).
  • Cong Pan, Myung-Ki Cheoun, Yong-Beom Choi, Jianmin Dong, Xiaokai Du, Xiao-Hua Fan, Wei Gao, Lisheng Geng, Eunja Ha, Xiao-Tao He, Jinke Huang, Kun Huang, Seonghyun Kim, Youngman Kim, Chang-Hwan Lee, Jenny Lee, Zhipan Li, Zhi-Rui Liu, Yiming Ma, Jie Meng, Myeong-Hwan Mun, Zhongming Niu, Panagiota Papakonstantinou, Xinle Shang, Caiwan Shen, Guofang Shen, Wei Sun, Xiang-Xiang Sun, Jiawei Wu, Xinhui Wu, Xuewei Xia, Yijun Yan, To Chung Yiu, Kaiyuan Zhang, Shuangquan Zhang, Wei Zhang, Xiaoyan Zhang, Qiang Zhao, Ruyou Zheng, and Shan-Gui Zhou , DRHBc Mass Table Collaboration, Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. Examples of odd Nd isotopes, Phys. Rev. C 106, 014316 (2022).
  • W. Sun, K.-Y. Zhang, C. Pan, X.-H. Fan, S. Zhang, and Z.-P. Li, Beyond-mean-field dynamical correlations for nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, Chin. Phys. C 46 064103 (2022).
  • S. Kim, M.-H. Mun, M.-K. Cheoun, E. Ha, Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 105, 034340 (2022).
  • K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, Z. Dong, X. Du, L. Geng, E. Ha, X.-T. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, H. Li, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C. Tam, Thaivayongnou, C. Wang, X. Wang, S. H. Wong, J. Wu, X. Wu, X. Xia, Y. Yan, R. W.-Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang, X. Zhang, Q. Zhao, S.-G. Zhou, DRHBc Mass Table Collaboration, Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, I: Even–even nuclei, At. Data Nucl. Data Tables 144, 101488 (2022).
  • Y.-B. Choi, C.-H. Lee, M.-H. Mun, and Y. Kim, Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg, Phys. Rev. C 105, 024306 (2022).
  • Y.-B. Choi, C.-H. Lee, and Y. Kim, Nuclear structure of Pt isotopes (in Korean), NPSM 72, 113 (2022).

2021

2020

  • E. J. In, Y. Kim, P. Papakonstantinou, and S.-W. Hong, Shape Coexistence in Isotopes from Oxygen to Calcium, J. Korean Phys. Soc. 77, 966–970 (2020).
  • X.-X. Sun, J. Zhao, and S.-G. Zhou, Study of ground state properties of carbon isotopes with deformed relativistic Hartree-Bogoliubov theory in continuum, Nucl. Phys. A, 1003 122011 (2020).
  • K. Zhang, M.-K. Cheoun, Y.-B. Choi, P.S. Chong, J. Dong, L. Geng, E. Ha, X. He, C. Heo, M.C. Ho, E.J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C.K. Tam, Thaivayongnou, C. Wang, S.H. Wong, X. Xia, Y. Yan, R.W.-Y. Yeung, T.C. Yiu, S. Zhang, W. Zhang, S.-G. Zhou, DRHBc Mass Table Collaboration, Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes, Phys. Rev. C 102 024314 (2020).

2019